LlamaIndex
Build AI applications faster with LlamaIndex and Postgres
LlamaIndex is a popular framework for working with AI, Vectors, and embeddings. LlamaIndex supports using Neon as a vector store, using the pgvector
extension.
Initialize Postgres Vector Store
LlamaIndex simplifies the complexity of managing document insertion and embeddings generation using vector stores by providing streamlined methods for these tasks.
Here's how you can initialize Postgres Vector with LlamaIndex:
Generate Embeddings with OpenAI
LlamaIndex handles embedding generation internally while adding vectors to the Postgres database, simplifying the process for users. For more detailed control over embeddings, refer to the respective JavaScript and Python documentation.
Stream Chat Completions with OpenAI
LlamaIndex can find similar documents to the user's latest query and invoke the OpenAI API to power chat completion responses, providing a seamless integration for creating dynamic interactions.
Here's how you can power chat completions in an API route:
Starter apps
Hackable, fully-featured, pre-built starter apps to get you up and running with LlamaIndex and Postgres.
AI chatbot (OpenAI + LllamIndex)
A Netx.js AI chatbot starter app built with OpenAI and LlamaIndex
RAG chatbot (OpenAI + LlamaIndex)
A Next.js RAG chatbot starter app built with OpenAI and LlamaIndex
Semantic search chatbot (OpenAI + LlamaIndex)
A Next.js Semantic Search chatbot starter app built with OpenAI and LlamaIndex
Reverse image search (OpenAI + LlamaIndex)
A Next.js Reverse Image Search Engine starter app built with OpenAI and LlamaIndex
Chat with PDF (OpenAI + LlamaIndex)
A Next.js Chat with PDF chatbot starter app built with OpenAI and LlamaIndex